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Higher-order resonant behavior in asymmetric nonlinear stochastic systems
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We study periodically modulated bistable dynamic elements subject to Gaussian noise and a symmetry-
breaking dc signal. The skewing of the bistable potential function by the dc signal leads to the appearance of
even multiples of the drive frequency in the output power spectral density. The spectral amplitadlethef
harmonics are found to exhibit maxima as functions of the noise statistics and the dc signal; the maxima can
be shown to depend on matchings of characteristic deterministic and stochastic time scales. A phenomeno-
logical description based on a generic bistable system is followed by actual perturbation calculations of the first
two spectral amplitudes for a real system, a Josephson junction shorted by a superconductitiheloop
mainstay of the rf superconducting quantum interference devites behavior underlies a recently proposed
“frequency-shifting” technique for circumventing detector noise limitations which would otherwise constrain
the detection of very low-amplitude signal§1063-651X%97)05604-3

PACS numbseps): 05.40:+j, 02.50.Fz

[. INTRODUCTION Gaussian white noise. The spectral amplitudes of the har-
monics of the periodic signal, in the output PSD, pass
Periodically modulated stochastic systems have receivethrough maxima as a function of noise intensity. It has been
considerable attention recenfly]; these systems which can suggested that this behavior might be a manifestation of the
generally be described by the “particle-in-potential” para- well-knownstochastic resonand&R) effect at higher orders
digm, x= —[ U (x)/ax]+ S(t) + N(t), exhibit a richness of [3].
noise-mediated resonance behavior in the spectral measures!n this work we present a systematic treatment of the
[e.g., the output signal-to-noise rati&NR)] of the response. resonant behavior of the spectral amplitudes lab
In these systems(t) andN(t) denote a deterministic signal (k=1,2,3...). The resonant behavior depends on a new
(often taken to be time periodiand noisgusually taken to ~ control parameter, the degree of asymmetry, and can be in-
be Gaussian The potential functionU(x) is even(often  terpreted at all orders, via a matching of deterministic and
bistable, resulting in an output power spectral deng®pD  Stochastic time scales reminiscent of recent interpretations of
consisting ofodd multiples of the signal frequenay super- SR in integrate-fire model neurop$] and bistable dynamic
imposed on a Lorentzian noise background. However, reasystemg5] as abona fideresonance. We start with a purely
world manifestations of these systems are often asymmetri€leterministic phenomenological theory that shows the occur-
with the dynamics containing even and odd functions of theence of multiple maxima in the spectral amplitudes in a
state variable. The simplest route to asymmetry in the abov8eneric asymmetric system; we then introduce characteristic
dynamics is to incorporate a small dc tewinto the Signal stochastic time Sca|d$hese Critica”y depend on the asym-
S(t) or, equivalently, a term-xx, into U(x). The output ~Metry, as well as the spectral characteristics of the haise
PSD of asymmetric systems contains contributions fedin ~ argue that a precise and elegant matching of these time scales
the harmonics of the periodic signal frequency; hence, th&ust occur forll k for there to be resonance behavior in the
appearance and change in the magnitudes, as a function &pectral amplitudes of the harmonics when the noise is
Xo, Of peaks at even multiples af (this would, of course, be turned on. The phenomenological development is followed
accompanied by a concommitant change in the spectral anpy a theoretical computation of the first two spectral ampli-
plitudes at odd multipléscould be taken as quantifying mea- tudes k=1,2) on a rf superconducting quantum interference
sures of the asymmetry-producing signal. Asymmetric dy-device(SQUID) loop; results in line with recent experimen-
namic systems of the above form have been studgevith tal observations are obtained, and the resonance behavior as
a function of the noise variandéor fixed asymmetryis also
discussed. In a recent publicatigg] we have shown numeri-

*Electronic address: inchiosa@nosc.mil. Web site: cal simulations of the higher harmonic behavior in the rf
http://hpcweb.nosc.mil/hpc/sr/ SQUID loop toO(k=4) and speculated that these results
"Electronic address: bulsara@nosc.mil. Web site: could be applied to carrying out detection of very weak dc
http://hpcweb.nosc.mil/hpc/sr/ signals in nonlinear sensors that are constrained by noise in
*Electronic address: gammaitoni@perugia.infn.it. well-defined bandwidths; we discuss these points in greater

Web site: http://www.pg.infn.it/sr/ detail in the conclusion.
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Il. PHENOMENOLOGICAL DESCRIPTION 0.80

We start with a simple phenomenological model of a
purely deterministic situation. Consider a periodic signal
Asinwt applied to a generic bistable potenti&(x). The sig-
nal is assumed to be of amplitude barely sufficient to achieve
switching between the two stable states of the potential,
which we assume to be asymmetric. We shall be concerned
only with the dichotomous output(t) over a single period

0.60 — =1

T of the signal, where we define 37 040 —
f(t)=f, 0<t<® i =
=0 O=t<T. (1) k=3
0.20 —
Clearly, the residence time3 andT— 0 in the two stable k=k4_
states are functions of the asymmetry of the system: for a 8 e
symmetric potential® =T/2. We now Fourier analyz(t)
= 0.0 I L R
Ao : 0.50 0.60 0.70 0.80 0.90 1.00
f(t)= 7+k21 {acogkwt) + bysin(kot)},  (2) o/T
where we readily compute, FIG. 1. Spectral amplitudes at frequenicy, k=1,2,...,6 in
the output PSD for the purely deterministic case, as computed from
2T 2f,0 the phenomenological theof¥£g. (3)] with fo=1. The horizontal
ao= T 0 f(t)dt= T scale represents the degree of asymmetry as quantified by the ratio
0/T.
2(T fo . . . .
A== f(t)Cos{kwt)dt=—kSIn(kw) given spectral amplitud¢M,| (assuming the output to be
0 a

approximately periodic we must achieve(t,)=0, and
51 ¢ ét,)=|T—<(t>r>. For t?e;irst few harn(wnics this yields imme-
_ < ; _ 0. iately (t,)=T/2=(t,) for k=1 (this is the classical
b= Tfo f(Osinkatydt Wk[l cotkw®)]. frequency-matching condition for stochastic resongnce
(t))=T/4 and(t,)=3T/4 for k=2, etc. In fact, we find a
Clearly, for a symmetric potential®(=T/2), only the odd precise matching of stochastic and deterministic time scales
multiples of » will be present. From the above expressions.for every frequency ke whenever the spectral amplitude
the spectral amplitude &t is given by the absolute value of |M,| possesses a maximum. At frequernay we may write
the general conditions for these “resonances’” as

f 21y ko®
M= (S (ko®) +[ 1 - cogkw®) 2 2=—Csin——, T ok
) (=r 35 (t)=T—(), ) 1onik’ 4

where we will be interested in the absolute value only. A plot . .
(Fig. I of |M,| over the intervalT/2<©<T revealsymul-p wheren is odd and X n=k. This leads to an elegant pattern

tiple maxima with the number of maxima being2 and of numberf(sri\owrr:]lrt] E%ble :(fcf["(:hljér'é'r'n’g) nWPIC%e;(_
(k+1)/2 for even and odd, respectively. The locations of POses a precise matching of stochaslite mean residence
these maxima are readily found from the conditiont'meg and determ!mstlc(the _S|gnal periojitime scales t_hat
ko®=nm (n odd. We observe that the fundamental must exist to obtain thémultiple) resonancegas a function

(k=1) has a single maximum fd&®» =® ,=T/2 correspond-
ing to the symmetric case, the first harmonic=2) has a
single maximum for® =®,=3T/4, thek=3 harmonic has

TABLE I. Mean residence time ratios which maximize the spec-
tral amplitude at frequenclw.

maxima at ®=03;=5T/6,T/2, the k=4 harmonic at | i)
®=0,=7T/8,5T/8, and so on. Notésee Fig. 1 that the
spectral amplitudes with odkl have a maximum a®=T/2 1 I
(corresponding to the symmetric potential gasehile ones 2 3
with evenk vanish in this case. 3 3 3
The extension to the noisy case is achieved by introducing 2 ;
the mean residence timég) and(t,) in the left and right 5 2 2 5
states of the potentidthe left well has the shallower mini- 6 & 3 L
mum). For convenience, these may be computed in the abr : 2 & &
sence of the periodic signal; the presence of the signal affects u 2 2 =
these mean times only slightl] for weak signal ampli- ¢ g = = 3 L

tudes. We then postulate that to achieve a maximum in &
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of asymmetry at the frequenciekw when the system is
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whereF(t) is zero-mean “white” noise with autocorrelation

noisy. We now explore the resonance behavior in a specifi¢F (t)F(t+s)),= 8(s) and 7 is the correlation time of the

system, the rf SQUID loop.

lll. THE RF SQUID LOOP

“colored” noise y(t). Then, one easily verifie§9] that
y(t) has zero mean and autocorrelation function
(y(t)y(t+s))=(y?)e 19" whence the “white” limit, cor-
responding to delta-correlated noise, is realized when

~ The standard rf SQUID loop is a superconducting loop;_.0. The colored noise has variangg) = o27/2 [we reit-
into which a single Josephson junction has been ins¢fled  erate that(t) has units of normalized magnetic flux

The dynamics are multistable with the magnetic flux through

It is convenient to prebias the SQUID loop so that the

the superconducting loop being quantized in units of the ﬂwbotential (7), for B>1, is centrally bistable with possible

quantumd,=h/2e. In the presence of the junction, the mag- oytlying metastable states. This is accomplish@Hby in-
netic flux @ through the loop, in response to an appliedcorporating a dc bias2 (m odd in the potential: we re-

time-dependent magnetic fluk,, evolves according to the
dynamics[7],

d? d

d(t
+T|_a+1 () IBS

27D (1) D(1)
Dy 2w oM -

Le T, By

dt?

(5

where L and C are the loop inductance and capacitance,
7. =L/R; (R, being the normal state resistance of the junc-

tion), and the parameteB,;=2wLi. /P, (i, is the junction
critical currenj controls the hysteretic behavior of the de-
vice: the SQUID output is hysteretic fgBs>1, i.e., the
steady state&b vs &, curves are multivalued. In most prac-

tical applications, the SQUID loop is shunted by a low resis-

tance in order to remove hysteresis in the voltage-curre
characteristic of the junctiof¥]; this process effectively ren-
ders the link capacitandg extremely small so that the iner-
tial term in Eq.(5) may be neglected. Transforming to the
normalized state variabbe(t)=®(t)/d,, we may write the
dynamics(5) in the “particle-in-a-potential” form,

(X)
X

TIX= +(t)+y(t), (6)

where the dot denotes time differentiation, and the potenti
function

@)

1 ,  Bs
U(x)= E(X—Xo) = cog2mX),

is multistable wherB,> Bs., whereB,.=1 for x,=0. We
have expressed tHeormalized external fluxd./d, as the
sum of three terms: a symmetry-breaking dc tegniwhich
we incorporate intod(x)], an ac termz(t) =Asin(wt+ 6)
with @ being a(often assumed randgnphase factor, and a
noise termy(t). Typically the time constant, ~10 *? sec,
so that with the exception of thénterna) thermal noise,

which is assumed negligible for the purposes of this paper,
any externally applied noise will usually have a bandwidth

far smaller than the SQUID bandwidth ~1. This is even

more the case in experimental setups wherein a resistive
shunt must often be placed across the SQUID to filter out

high-frequency noise. TheR circuit formed by the shunt

placexy by xo+m/2. Assuming the signal and noise to be
very slow compared to the well-relaxation tirftee standard
adiabatic assumptionwe may incorporate the signaj(t)
and the noisg/(t) into the potential functiorJ (x) as well,
writing Eq. (6) in the form 7 x=—dU4(x)/dx where the
potential functionU, is now given by

2 B
— (1) —4—;2 cog27X).
9

It is worthwhile to note that for the very small time constants
7. that characterize real SQUIDs, the adiabatic assumption is

1 m
Ue(x(t) =5 | x=Xo= 5 = ¥(1)

néxpected to be a very good one, breaking down for input

signals or input noise with power at very high frequencies
(approachingr, ~1). The thermal background noise in the
sensor is indeed broadbafid but far smaller in magnitude
than ambient environmental noise that limits practical
SQUIDs. The environmental noise usually has a bandwidth
less thanr, 1. As already stated, we neglect the thermal
background noise throughout this work. Finally, we assume
that the signal amplitud@ is too weak to allow switching

etween the stable states of the potential to occur in the

bsence of the noise.

The fixed points of the effective potential may be com-

puted in the absence of the noigee., y(t)=0] by setting
dU ¢/ 9x=0 and solving the resulting transcendental equation
via a perturbation expansion to leading order g and
n(t). We then obtain

_m  Xot ()
=2 1op, 10
for the centralunstable fixed point, and
- m=1 Xxptp(t)+1/2
T 1+8,
m+1  Xo+ p(t)—1/2
X2=5 1+ B4 (1)

resistance and the loop inductance results in a low-pass filtdor the stable fixed points to the lefk{) and right &) of

which decreases the input noise bandwidth even fuftBler
Hence, we must takg(t) to be zero-mean Gaussiaxpo-
nentially correlatednoise; it may be modeled via a white-
noise-driven Ornstein-Uhlenbe¢loU) procesq9]

y=—1y+aF(1), (8)

X, . We note that the above expressions are not valid in the
Xo— 1/2 limit in which the central bistable structure of the
potentialU(x) disappeardin fact, the theoretical computa-
tions of the power in various harmonics also break down in
this limit). The theoretical and simulation results are identi-
cal for any oddm, and are reflected about the vertical axis
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Very good agreement was found between theory and numeri-

{a)
0.4 A cal simulations. In what follows, we present a much fuller
. JIN account of the theoretical calculation of the output power as
;7 l JP(N L/ > well as new results which provide a guide for using the reso-
5o VI S nance behavior depicted in Fig. 1 in practical nonlinear dy-
s /7‘ ‘ [\M 3 namic devices.
5 0.2 Pt
\
0.4 ™ IV. THE SQUID LOOP AS A TWO-STATE SYSTEM
P 65 i 15 WITH ASYMMETRY
We now present an approximate theoretical calculation of
e) the first two spectral amplitudes in the output PSD. Since
0.4 7.<7, the SQUID may be assumed to remain in (it®n-
. equilibrium) steady state, making transitiofagccompanied
5; 02 Y 3 by the emission of a single flux quanturonly when the
PR = : noise causes the currently occupied minimum to coincide
= / = with a point of inflexion that can be calculated via
502 > (62U4/9x?)=0. A straightforward calculation yields the lo-
o 0. cations of the points of inflexion generated in place of the
B a— e R e § left and right minima when a transition between states occurs
m-1 1 1
FIG. 2. PotentialU(x) (solid curve and its derivativeU’(x) Xi1=——+5-¢os (=Bs7),
(dashed curve, scaled by 1/4 for plotting convenignfoe (a)
B=5, x,=0, (b) B=5, x,=0.1, (c) B=1, %,=0, (d) B=1, m+1 1
Xo=0.1. Xiz=—5—~ Zcosfl(—ﬁgl). (12

for —1/2<x,<0. Any otherx, may be mapped into the
range— 1/2<x,<1/2 by modifyingm.

In Fig. 2 we plot the potentialU(x) and its gradient m Bs
19U/ ox (the factors is introduced for scaling convenience in Yer2=Xirz™Xo~ 5 ~ (D) + 5_sin(2mxi ) (13)
the figure for different values of the nonlinearity parameter

Bs and the dc asymmetry,. Clearly, the(generalizeflin-  to accomplish switching. Therefore, we model the SQUID as
verse gradient function also represents the input-output chag two-state system with a hysteretic input-output character-

acteristic of the device. The central bistable structure of thestic having state probabilities; (t) and master equations
potential (for Bs>1, xo=0) is readily apparent. The inter- ’

sectiorgs) of the gradient term with the horizontal axis yield b1:W21p2—W12D1,
the extrema of the potential and the multivalued, hysteretic
character of the input-output characterisgpicture the gra- Po=Wysp1— WPy, (14)
dient function rotated 90° and flippedorresponds to the

bistable structure of the potential. The extrema of the gradiwhere p,+p,=1 andW,, denotes the transition rate from
ent correspond to the points of inflexiggee Eq(12) below]  statei to statek. These rates are the approximate inverses of
of the potential. For the asymmetric ca@®rresponding to  the mean passage timés) and(t,) introduced earlier. The
nonzerox,), we observe a skewing of the potential, accom-transition rates are computed by solviig] the first passage
panied by unequal areas enclosed between the gradient teggroblem for the OU proces@nderpinning the noigebe-
and the horizontal axis. Although we have shown only thetween the valuey.; andy,,. For W,, we assume the pres-
central wel(s) of the potential for a giverBs it is clear that ence of an absorbing boundary at,, with y.; being the
(depending on the magnitude gf) we would, in general, start point. Then we have,

obtain multiple zeros of the gradient function, corresponding
to a multistable potential.

SR, defined in the conventional way via the
maximum—as a function of input noise power—in the out-
put power signal-to-noise ratilSNR) at the fundamental _ Yer 2
frequencyw, has been observed in an experiment performed _ZT\EJ%Z e ¥(udu.
in 1992[8]. Two separate experiments carried out in 1994
[10,11 have observed such resonance behavior in the speé corresponding expression may be obtained\ir
tral amplitudes of higher harmonic@ncluding the even .
oneg when the symmetry-breaking dc signgj is present. -1_T _ el uge_

Numerical simulations that determined the output power in Woi =Tar 27\/;[%2 e P (-wdu. (18
the k=1—4 harmonics of the SQUID modéb) were re-

cently presented, along with an approximate theoretical comWe have defined W(u)=3[1+ erf(u)] and uc,
putation of this output power for thie=1,2 harmonicg6]. Eyclyz/a\/?; further, we have, for later notational conve-

Thus the noise must achieve the values

. _p [ Yer 2,2 Z 22
W121%T12:20' 2f e? lo szf e 2 lo dz'

Ye2 —-®

(15
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nience, sefl,=(t,) andT,,=(t,). As expected, fox,=0, Wi~ ag+ayn’ () + a7’ (1),

we findy.,= —y.; andT,,=T,;. The integrals in Eqg15),

(16) may be expressed in terms of the imaginary error func- War~ Bo+ B17" (1) + Ban' A1), (23)

tion erfi(z)=erf(iz)/i and the generalized hypergeometric

function ,Fq(as, ... @p;by, ... bg;2) the expansion coefficients being obtained through a straight-

forward expansion of the transition rates

Ucy w2
e'"v(xu)du ” '2
Uc2 P S A T'120 a=—l T120 T'120
.3 9.42y,,2 | Ye1 o1 e TlZO, 2 2 T120 TEZO
{1f oFa(1,1:3,2,u2)u
=| —/merfi(u) = .
4 2\m Ug Bo=T B,= T 210 8 1(T"210 T'%m)
[9 , =——, = — — —
o= 210 ! T210 2 2 T210 T210
To compute the PSD of the SQUID output, we must first (24)
solve the systenil4) for the state probabilitiep; «(t). Then,
the two-state dynamics that characterize the SQUID may b#here,
well approximated by the global probability density function
2
Ti=T =2 e ¥ (u)d
P(X,)~Pa(t) 8(x— 10+ Po(1) X —Xz0), (17 126=T1d (=0~ ”_Lm (weu

wherex; ;=X Ja-o are the locations of the minima of the

aT
unperturbedpotential(7). The mean valuéx(t)) is obtained T’ ,= —1,2 :27-\/;{e“§20\1f(uc20)—e”iw\lf(uclo)}
from IN | =0
<X(t)>:f XP(X,1)dX=X10P1(t) +Xa0P2(t). (18 T"120= a2
7' ()=0
A general solution of Eq(14) is beyond the scope of this :47'\/;{ucloeu§w\l,(uclo)_uc2oeu§20\l,(u020)}

paper. However, we are interested in the spectral amplitudes

of the first two peaksK=1,2) in the output PSD. Accord- 2

ingly, we are interested only in an expansion{a{t)) to To10=Toal (t)=0= 27’\/_f e ¥(—u)du
include terms up to second ord@e., thek=2 harmoni¢ Uc20

(X(1))=Mg+ M coq wt+ ¢1) + Mcod 2wt + ¢b,), (19 T _ T
210— ‘977I

"(1)=0
where ¢, , are phases that may have random components, 7'

and the amplitude®; are as yet undetermined. The autocor- = 27-\/;{9U§20\1r( —Ugp0) — euglo\If( —U¢10)}
relation function of the output is

9Ty
1 T T// =
K(8)=((X(D)X(t+8)))— ?fo (x()){x(t+s))dt  (20) 20 an'? o

2 2
= 47'\/;{u010eu“0\1’( —Ugg0) — Ugpe€“c20W (— Uc20)}-

in the s—< limit, T=2#/w being the signal period. Using

Eq. (19 we readily find (25
, M K M ,2 ~ We now formally integrate the first equation in H44),
K(s)=Mgq +TCOS(wS)+TCOS(2wS), (21)  ignoring the initial condition term which vanishes in the
t—oo limit

so that the powers at the frequenciesind 2w in the output .

PSD are, respectivelyl 12/2 andM ,%/2. pl(t)=g*1(t)f W,y(t')g(t)dt, (26)
We solve the systenil4) after expanding the transition to

rates toO(A?). Specifically, we defineucy o6=Uc1 d 2()=0

and set where

Ueg 2= Ueg 20— 7' (1), "(t)=A'sinwt+0), (22 t . v2es ,

c1,2= Yc1,200 7 (1) 7' (1) n( ) (22 g(t)Eexp{f [a+B7 (t')+y7y 2(t )dt't,  (27)
with A’=A//2(y?) being a naturafand convenientpertur-
bation expansion parameter; we expect the theory to be validith a=ay+ By, B=a1+ B1, yY=as+ B,. Performing the
for A’<1 and within the realm of the adiabatic approxima-integration in Eq.(27) and expanding the result ©(A’?)
tion (see above We now expand the transition rates as we find,
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' 12

BA
1- Tcos{wH 0)—

g(t)~e4t[ sin(2wt+ 6)

4w

2p12

+ W00§( wt+6)

' 12

BA
1+ Tcos{wH 0)+

g Yt)~e ¢ sin(2wt+ 6)

4w

ZA/Z
+ —wfcos’-(wH 0)

. , (28)

where {=a+ yA’'?/2. Substituting these expressions into
Eqg. (26), we may carry out the integration, witiy— — .
After considerable simplification we finally arrive at

Bo  ,, PoBPra
7 (a2t 0P €

pa(t) o wt+ ¢+ 6)

12 12
- m(P§+ P2)Y2cog 2wt + ¢hp+ 0) + 2.2Po

(29)
where @ is the (in general, randominitial phase and,

o=tan Y(alw), ¢,=tan }(P./P,),

Pc=(a?+40%)  Ya(BoB?—20°By) +20*(Boy+2B18)}

BoBw?
o

+ B(a?+ w2)1‘ —2w2,81—ﬁo,8a]

P=(a’+40?)  Y{2w(BoB?—2w"B,)

—aw(Boy+2B18)} +w(a?+w?) ?

x| 2aBB,— 28,82+ %(azﬂ)z)]
2+ 20? 2
Po= Fob o ©Pz _a2+Bw2(Blw2+ aBBo).

Then, using Eqs(17) and(19), we arrive at the expressions

BoB— B

M1=A"(X10~ X20) 212

a(a’+ o
12
M3 =75 (X10~ %20 (PE+ P9 (30)

We have already showf6] that the expression$30)
agree very well with direct numerical simulations of the sys-
tem (5) and (8), as well as the two-state systefd3). In

particular, we have seen that the two-state approximation

that is widely used in adiabatic treatments of @RL2] is a

very good approximation to the SQUID dynamics because of

the essentially steady-state nature of Eg). predicated by
the small time constant, . Hence, we have been able to
treat the problem as a first passage problem of rtbise
rather than the full dynamid®) (the latter problem would be

M. E. INCHIOSA, A. R. BULSARA, AND L. GAMMAITONI
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X0

FIG. 3. Contour plot of SQUID output powev2/2 (in dB) at
the driving frequencyw vs asymmetrizing dc signad, and noise
parameter (in units of sec!) ¢2. Other parameters3,=5,
A=0.1, =10, 7=0.01,m= 1. Numbers within contour plot mark
the maximum and minimum power pointis dB).

In Figs. 3 and 4 we show the powdrmomputed via the
theoretical expression80)] M2/2 andM3/2 in the first two
peaks k=1,2) in the output PSD as functions of the dc
offsetx, and the input noise parametef. The known signal
amplitude is held constant, as is the SQUID nonlinearity pa-
rameter B, ; this results in a constant ratia/AU,, where

30

25

15

10

X0

FIG. 4. Contour plot of SQUID output powev 5/2 (in dB) at

frequency 2» vs asymmetrizing dc signal, and noise parameter

(in units of sec?!) 2. Other parameters as in Fig. 3. Numbers

analytically intractable We now analyze the expressions within contour plot mark the maximum and minimum power points

(30) under different circumstances.

(in dB).
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AUy is the height of the potential barrier of the central bi- make excursions to outlying minima of the potenti@l and
stability of our problem, in the absence of any skewfihg., the system can no longer be approximated by centrally
for xo=0). In M§/2 (the SQUID output power at frequency bistable dynamics; in this case the theory breaks down. For
w) the basic SR effect is readily visible: fogp=0, the the adiabatic criterion to be satisfied we should have
power displays a clear maximum as a function of the inputf<r ~1,7~1. Simultaneously, the system and signal param-
noise power. The power in the first harmorli¢3/2, vanishes  eters should be chosen so tHagW,,,W,,, else our ap-
asxg—0 as expected. However, fop#0 this power, like  proach of assuming the SQUID to be in its steady state and
the power at the fundamental, displays a maximum as a funessentially tracking the noise dynam[esa the computation
tion of the input noise power; also, a maximum is seen as af the transition rates in Eq14)] breaks down. Certainly,
function ofxp, and the location of this maximum depends onthe first of these conditions holds true for the frequencies
the noise power. These results have also been demonstrateohsidered in this work, and for those that are likely to be
in bistable systems driven by white no{sd. The powers do  encountered in many practical applications. When the signal
not display a strong dependence en however, the adia- frequency exceeds the noise bandwidth, the adiabatic ap-
batic approach does require tHa$(w/2w)<r‘1,r[1. proximation begins to unravel; however, for signal frequen-
It is important to note that the central bistable structure ofcies not too far removed from the noise bandwidth, the
the potential disappears fay=1/2; therefore, close to this theory can be shown to yield the correct qualitative behavior,
point the bistable model upon which our theoretical calcula-although agreement such as that reportef6inwill not be
tion is based begins to break down. [I6] we performed achieved in this case.
numerical computations of the powevk:/2 up tok=4. We The above comments are directly connected to the valid-
found that the bistable theory agreed well with numericality of the representation of the SQUID dynamics via a di-
simulations of a SQUID with a two-state-filtered output, chotomous Markov process. Typically, the residence times
even forx, close to 1/2. The bistable theory also agrees weldistribution for the process may be computed directige,
with numerical simulations of a SQUID loop with an unfil- €.9.,[4]) from the probability density functioril?7). For a
tered, analog output, except fé=1 with x, approaching Markov process, the residence times distribution is expected
1/2. For this case the bistable theory, by ignoring the motio© be a decaying exponential at long times, at least. In gen-
within the deepestand approximately paraboligotential eral, one would realize such dynamics if the transition rates
well, underestimates the output power at frequengyal- Wik were constant. The adiabatic assumptions are, therefore,
though it does accurately estimate the power at @hich  critical to the success of the Markov approximation; by as-
arises primarily from interwell motion. suming the signal frequency to be much smaller than other
characteristic system frequencies, we are assuming the tran-
sition rates to be quasistationary. At the same time, succes-
sive transitions or “spikes” should not be correlated; assum-
It is worth starting this section by reiterating that the ing very weak[as quantified in Eq(22)] signal amplitudes
theory of this paper has been shoyd] to be in excellent and weak(compared to the barrier heighoise intensities
agreement with numerical simulations on the SQUID equaassures this to be the case, even though the noise correlation
tions (6) and(8). In fact, the matching$4) of deterministic ~ time is typically greater than the SQUID constant (the
and stochastic time scales that characterize this higher-ordexception being thermal noijseWhen the aforementioned
resonant behavior have been shown to hold fiyaalita- conditions are met, the dynamics are approximately Markov-
tively) for the particular example systefthe SQUID loop  ian; we have already sed®] that the approximations pro-
considered here. vide highly accurate representations of the actual dynamics.
What are the limits of validity of the theoretical calcula- The results of this papefwhich explain very well the
tions presented here? In classical SR treatmgin812 the  experimental observations pf0] and[11]) should be appli-
noisey(t) is taken to be white and a perturbation modifica-cable to generic bistable aréh special situations such as
tion of the Kramers rate used to compute the transition ratedescribed here in connection with the SQUIBultistable
Note that the Kramers rate in its “Arrhenius” forfi®] is, systems with broken symmetry. Many nonlinear detectors
itself, an approximation strictly valid for low-noise intensity suffer from significant low-frequency noise limitatioiihe
and large potential barrier heights; similar restrictions stillnoise may be internal, e.g.,fl/or externgl. By carefully
apply to the system at hand, if one wishes to describe theelecting the frequency of the knownbias signal, the de-
dynamics via a Markov procegsee below. The remaining tection may be shifted to a more acceptable part of the fre-
approximations that we have employed are the perturbatiogquency spectrum. Then, in a detector that hasagpriori
expansion(23) in powers of A’ and the adiabatic approxi- Symmetric potential, the appearance of the even multiples of
mation which assumes the ac bias signal frequency to be the in the output PSD, together with the change in the spectral
slowest rate in the dynamics. Both these approximations aramplitudes|M,| in the presence of the symmetry-breaking
well satisfied in the theory and simulations presented here. Isignal(which may be dc, or have a single frequency in which
fact, we would expect the theory to yield acceptable resultgase one looks at the properties of combination tones in the
even when the periodic signal is slightly suprathreshold, i.e.putput PSD, may be used to detect or estimate the weak
when deterministic switching is possible, as long as the noistarget signal. This idea was, in fact, demonstrated in labora-
has values such tha@t’' <1, in this case the system is apt to tory experiments carried out with a specially designed “SR
follow the behavior of the phenomenological two-state sys-SQUID” [10] assuming only internal white noise, as well as
tem discussed in Sec. Il. However, when the input signak conventional rf SQUI011] using externally applied cor-
and/or noise terms become too large, the SQUID is able teelated noise. In actual remote sensing applications, one of-
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ten knowsa priori the spectral characteristics of the back-weak signals via conventional techniques difficult, in the
ground noise. In this case, it is clearly of benefit to be able tgpresence of even moderate amounts of noise. For practical
adjust the potential barrier heightU, and/or the amplitude applications it would be desirable to be able to compute

of the known bias signal so as to achieve the highest possiblariori the receiver operating characteristics of the sensor
sensitivity. In fact, the peak powers in Figs. 3 and 4 increas¢13], which are plots of detection vs false alarm probabilities
as the raticA/AU, increases; hence, for optimum detection, for different detection thresholds. This calculation is cur-
it might be advisable to adjust the bias signal amplitéde rently in progress. Note also that the frequency shifting idea
such that it is almost at the threshold for deterministicthat is the focus of this paper applies exclusively to nonlinear
switching, with the barrier height already selected to maxi-systems; a linear sensor, for example, could not exploit this
mize the output SNR. The barrier height may be adjusted bphenomenon.
either fabricating a SQUID with a certain nonlinearity pa-

rameterB, (in turn, this parameter depends on the junction

critical currentl . and the loop inductande) or by introduc-

ing an asymmetrizing dc flux,, as discussed in this paper. It  A.R.B. acknowledges support from the Office of Naval
is important to note that theory predicts the best possibl&Research through Grant No. NO0O01496AF00002, the Inter-
output SNR at the fundamental for zero barrier height, cornal Research program at NCCOSC, and NATO-CRG
responding to the linear system case; however, other pract$31464. M.E.I. was supported in part by a Grant of HPC
cal considerations may render this mode of detection impradime from the DoD Major Shared Resource Center at
tical in real devices, e.g., the rf SQUID detector whereinWPAFB on the Intel PARAGON. We acknowledge helpful
background noise and a low slew rate make detection of vergliscussions with F. Marchesoni.
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