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Higher-order resonant behavior in asymmetric nonlinear stochastic systems
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~Received 18 November 1996!

We study periodically modulated bistable dynamic elements subject to Gaussian noise and a symmetry-
breaking dc signal. The skewing of the bistable potential function by the dc signal leads to the appearance of
even multiples of the drive frequency in the output power spectral density. The spectral amplitudes ofall the
harmonics are found to exhibit maxima as functions of the noise statistics and the dc signal; the maxima can
be shown to depend on matchings of characteristic deterministic and stochastic time scales. A phenomeno-
logical description based on a generic bistable system is followed by actual perturbation calculations of the first
two spectral amplitudes for a real system, a Josephson junction shorted by a superconducting loop~the
mainstay of the rf superconducting quantum interference device!. This behavior underlies a recently proposed
‘‘frequency-shifting’’ technique for circumventing detector noise limitations which would otherwise constrain
the detection of very low-amplitude signals.@S1063-651X~97!05604-3#
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I. INTRODUCTION

Periodically modulated stochastic systems have rece
considerable attention recently@1#; these systems which ca
generally be described by the ‘‘particle-in-potential’’ par

digm, ẋ52@]U(x)/]x#1S(t)1N(t), exhibit a richness of
noise-mediated resonance behavior in the spectral mea
@e.g., the output signal-to-noise ratio,~SNR!# of the response
In these systems,S(t) andN(t) denote a deterministic signa
~often taken to be time periodic! and noise~usually taken to
be Gaussian!. The potential functionU(x) is even ~often
bistable!, resulting in an output power spectral density~PSD!
consisting ofoddmultiples of the signal frequencyv super-
imposed on a Lorentzian noise background. However, r
world manifestations of these systems are often asymme
with the dynamics containing even and odd functions of
state variable. The simplest route to asymmetry in the ab
dynamics is to incorporate a small dc termx0 into the signal
S(t) or, equivalently, a term2xx0 into U(x). The output
PSD of asymmetric systems contains contributions fromall
the harmonics of the periodic signal frequency; hence,
appearance and change in the magnitudes, as a functio
x0, of peaks at even multiples ofv ~this would, of course, be
accompanied by a concommitant change in the spectral
plitudes at odd multiples! could be taken as quantifying mea
sures of the asymmetry-producing signal. Asymmetric
namic systems of the above form have been studied@2# with
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Gaussian white noise. The spectral amplitudes of the h
monics of the periodic signal, in the output PSD, pa
through maxima as a function of noise intensity. It has be
suggested that this behavior might be a manifestation of
well-knownstochastic resonance~SR! effect at higher orders
@3#.

In this work we present a systematic treatment of
resonant behavior of the spectral amplitudes atkv
(k51,2,3. . . ). The resonant behavior depends on a ne
control parameter, the degree of asymmetry, and can be
terpreted at all ordersk, via a matching of deterministic an
stochastic time scales reminiscent of recent interpretation
SR in integrate-fire model neurons@4# and bistable dynamic
systems@5# as abona fideresonance. We start with a pure
deterministic phenomenological theory that shows the occ
rence of multiple maxima in the spectral amplitudes in
generic asymmetric system; we then introduce character
stochastic time scales~these critically depend on the asym
metry, as well as the spectral characteristics of the noise! and
argue that a precise and elegant matching of these time s
must occur forall k for there to be resonance behavior in t
spectral amplitudes of the harmonics when the noise
turned on. The phenomenological development is follow
by a theoretical computation of the first two spectral amp
tudes (k51,2) on a rf superconducting quantum interferen
device~SQUID! loop; results in line with recent experimen
tal observations are obtained, and the resonance behavi
a function of the noise variance~for fixed asymmetry! is also
discussed. In a recent publication@6# we have shown numeri
cal simulations of the higher harmonic behavior in the
SQUID loop toO(k54) and speculated that these resu
could be applied to carrying out detection of very weak
signals in nonlinear sensors that are constrained by nois
well-defined bandwidths; we discuss these points in gre
detail in the conclusion.
4049 © 1997 The American Physical Society
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II. PHENOMENOLOGICAL DESCRIPTION

We start with a simple phenomenological model of
purely deterministic situation. Consider a periodic sign
Asinvt applied to a generic bistable potentialU(x). The sig-
nal is assumed to be of amplitude barely sufficient to achi
switching between the two stable states of the poten
which we assume to be asymmetric. We shall be concer
only with the dichotomous outputf (t) over a single period
T of the signal, where we define

f ~ t !5 f 0 0<t,Q

50 Q<t,T. ~1!

Clearly, the residence timesQ andT2Q in the two stable
states are functions of the asymmetry of the system: fo
symmetric potential,Q5T/2. We now Fourier analyzef (t)

f ~ t !5
a0
2

1 (
k51

`

$akcos~kvt !1bksin~kvt !%, ~2!

where we readily compute,

a0[
2

TE0
T

f ~ t !dt5
2 f 0Q

T

ak[
2

TE0
T

f ~ t !cos~kvt !dt5
f 0
pk

sin~kvQ!

bk[
2

TE0
T

f ~ t !sin~kvt !dt5
f 0
pk

@12cos~kvQ!#.

Clearly, for a symmetric potential (Q5T/2), only the odd
multiples ofv will be present. From the above expressio
the spectral amplitude atkv is given by the absolute value o

Mk5
f 0
pk

$sin2~kvQ!1@12cos~kvQ!#2%1/25
2 f 0
pk

sin
kvQ

2
,

~3!

where we will be interested in the absolute value only. A p
~Fig. 1! of uMku over the intervalT/2<Q<T reveals mul-
tiple maxima with the number of maxima beingk/2 and
(k11)/2 for even and oddk, respectively. The locations o
these maxima are readily found from the conditi
kvQ5np (n odd!. We observe that the fundament
(k51) has a single maximum forQ5Q15T/2 correspond-
ing to the symmetric case, the first harmonic (k52) has a
single maximum forQ5Q253T/4, thek53 harmonic has
maxima at Q5Q355T/6,T/2, the k54 harmonic at
Q5Q457T/8,5T/8, and so on. Note~see Fig. 1! that the
spectral amplitudes with oddk have a maximum atQ5T/2
~corresponding to the symmetric potential case!, while ones
with evenk vanish in this case.

The extension to the noisy case is achieved by introduc
the mean residence times^t l& and ^t r& in the left and right
states of the potential~the left well has the shallower mini
mum!. For convenience, these may be computed in the
sence of the periodic signal; the presence of the signal aff
these mean times only slightly@6# for weak signal ampli-
tudes. We then postulate that to achieve a maximum i
l

e
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a

,

t

g
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a

given spectral amplitudeuMku ~assuming the output to be
approximately periodic!, we must achievê t r&5Qk and
^t l&5T2^t r&. For the first few harmonics this yields imme
diately ^t l&5T/25^t r& for k51 ~this is the classical
frequency-matching condition for stochastic resonanc!,
^t l&5T/4 and ^t r&53T/4 for k52, etc. In fact, we find a
precise matching of stochastic and deterministic time sca
for every frequencykv whenever the spectral amplitude
uMku possesses a maximum. At frequencykv we may write
the general conditions for these ‘‘resonances’’ as

^t l&5
n

k

T

2
, ^t r&5T2^t l&,

^t l&

^t r&
5

n/2k

12n/2k
, ~4!

wheren is odd and 1<n<k. This leads to an elegant pattern
of numbers~shown in Table I fork51,2, . . . ,9) which ex-
poses a precise matching of stochastic~the mean residence
times! and deterministic~the signal period! time scales that
must exist to obtain the~multiple! resonances~as a function

FIG. 1. Spectral amplitudes at frequencykv, k51,2, . . . ,6 in
the output PSD for the purely deterministic case, as computed fr
the phenomenological theory@Eq. ~3!# with f 051. The horizontal
scale represents the degree of asymmetry as quantified by the r
Q/T.

TABLE I. Mean residence time ratios which maximize the spe
tral amplitude at frequencykv.

k ^t l&/^t r&

1 1
1

2 1
3

3 3
3

1
5

4 3
5

1
7

5 5
5

3
7

1
9

6 5
7

3
9

1
11

7 7
7

5
9

3
11

1
13

8 7
9

5
11

3
13

1
15

9 9
9

7
11

5
13

3
15

1
17
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55 4051HIGHER-ORDER RESONANT BEHAVIOR IN . . .
of asymmetry! at the frequencieskv when the system is
noisy. We now explore the resonance behavior in a spe
system, the rf SQUID loop.

III. THE RF SQUID LOOP

The standard rf SQUID loop is a superconducting lo
into which a single Josephson junction has been inserted@7#.
The dynamics are multistable with the magnetic flux throu
the superconducting loop being quantized in units of the fl
quantumF0[h/2e. In the presence of the junction, the ma
netic flux F through the loop, in response to an appli
time-dependent magnetic fluxFe , evolves according to the
dynamics@7#,

S LC d2

dt2
1tL

d

dt
11DF~ t !

F0
1

bs

2p
sin

2pF~ t !

F0
5

Fe~ t !

F0
, ~5!

where L and C are the loop inductance and capacitan
tL[L/RJ (RJ being the normal state resistance of the jun
tion!, and the parameterbs[2pLi c /F0 ( i c is the junction
critical current! controls the hysteretic behavior of the d
vice: the SQUID output is hysteretic forbs.1, i.e., the
steady stateF vs Fe curves are multivalued. In most prac
tical applications, the SQUID loop is shunted by a low res
tance in order to remove hysteresis in the voltage-cur
characteristic of the junction@7#; this process effectively ren
ders the link capacitanceC extremely small so that the iner
tial term in Eq.~5! may be neglected. Transforming to th
normalized state variablex(t)[F(t)/F0, we may write the
dynamics~5! in the ‘‘particle-in-a-potential’’ form,

tLẋ52
]U~x!

]x
1h~ t !1y~ t !, ~6!

where the dot denotes time differentiation, and the poten
function

U~x!5
1

2
~x2x0!

22
bs

4p2 cos~2px!, ~7!

is multistable whenbs.bsc , wherebsc51 for x050. We
have expressed the~normalized! external fluxFe /F0 as the
sum of three terms: a symmetry-breaking dc termx0 @which
we incorporate intoU(x)#, an ac termh(t)5Asin(vt1u)
with u being a~often assumed random! phase factor, and a
noise termy(t). Typically the time constanttL'10212 sec,
so that with the exception of the~internal! thermal noise,
which is assumed negligible for the purposes of this pap
any externally applied noise will usually have a bandwid
far smaller than the SQUID bandwidthtL

21. This is even
more the case in experimental setups wherein a resis
shunt must often be placed across the SQUID to filter
high-frequency noise. TheLR circuit formed by the shun
resistance and the loop inductance results in a low-pass
which decreases the input noise bandwidth even further@8#.
Hence, we must takey(t) to be zero-mean Gaussianexpo-
nentially correlatednoise; it may be modeled via a white
noise-driven Ornstein-Uhlenbeck~OU! process@9#

ẏ52t21y1sF~ t !, ~8!
c

h
x
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-
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whereF(t) is zero-mean ‘‘white’’ noise with autocorrelatio
^F(t)F(t1s)& t5d(s) and t is the correlation time of the
‘‘colored’’ noise y(t). Then, one easily verifies@9# that
y(t) has zero mean and autocorrelation functi
^y(t)y(t1s)& t5^y2&e2usu/t, whence the ‘‘white’’ limit, cor-
responding to delta-correlated noise, is realized wh
t→0. The colored noise has variance^y2&5s2t/2 @we reit-
erate thaty(t) has units of normalized magnetic flux#.

It is convenient to prebias the SQUID loop so that t
potential ~7!, for bs.1, is centrally bistable with possible
outlying metastable states. This is accomplished@8# by in-
corporating a dc biasm/2 (m odd! in the potential: we re-
placex0 by x01m/2. Assuming the signal and noise to b
very slow compared to the well-relaxation time~the standard
adiabatic assumption!, we may incorporate the signalh(t)
and the noisey(t) into the potential functionU(x) as well,
writing Eq. ~6! in the form tLẋ52]Ue(x)/]x where the
potential functionUe is now given by

Ue„x~ t !…5
1

2 S x2x02
m

2
2y~ t !2h~ t ! D 22 bs

4p2 cos~2px!.

~9!

It is worthwhile to note that for the very small time constan
tL that characterize real SQUIDs, the adiabatic assumptio
expected to be a very good one, breaking down for in
signals or input noise with power at very high frequenc
~approachingtL

21). The thermal background noise in th
sensor is indeed broadband@7# but far smaller in magnitude
than ambient environmental noise that limits practic
SQUIDs. The environmental noise usually has a bandwi
less thantL

21. As already stated, we neglect the therm
background noise throughout this work. Finally, we assu
that the signal amplitudeA is too weak to allow switching
between the stable states of the potential to occur in
absence of the noise.

The fixed points of the effective potential may be com
puted in the absence of the noise@i.e., y(t)50# by setting
]Ue/]x50 and solving the resulting transcendental equat
via a perturbation expansion to leading order inx0 and
h(t). We then obtain

xu5
m

2
1
x01h~ t !

12bs
~10!

for the central~unstable! fixed point, and

x15
m21

2
1
x01h~ t !11/2

11bs
,

x25
m11

2
1
x01h~ t !21/2

11bs
~11!

for the stable fixed points to the left (x1) and right (x2) of
xu . We note that the above expressions are not valid in
x0→1/2 limit in which the central bistable structure of th
potentialU(x) disappears~in fact, the theoretical computa
tions of the power in various harmonics also break down
this limit!. The theoretical and simulation results are iden
cal for any oddm, and are reflected about the vertical ax
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for 21/2<x0<0. Any other x0 may be mapped into the
range21/2<x0<1/2 by modifyingm.

In Fig. 2 we plot the potentialU(x) and its gradient
1
4]U/]x ~the factor14 is introduced for scaling convenience
the figure! for different values of the nonlinearity paramet
bs and the dc asymmetryx0. Clearly, the~generalized! in-
verse gradient function also represents the input-output c
acteristic of the device. The central bistable structure of
potential ~for bs.1, x050) is readily apparent. The inter
section~s! of the gradient term with the horizontal axis yie
the extrema of the potential and the multivalued, hyster
character of the input-output characteristic~picture the gra-
dient function rotated 90° and flipped! corresponds to the
bistable structure of the potential. The extrema of the gra
ent correspond to the points of inflexion@see Eq.~12! below#
of the potential. For the asymmetric case~corresponding to
nonzerox0), we observe a skewing of the potential, acco
panied by unequal areas enclosed between the gradient
and the horizontal axis. Although we have shown only
central well~s! of the potential for a givenbs it is clear that
~depending on the magnitude ofbs) we would, in general,
obtain multiple zeros of the gradient function, correspond
to a multistable potential.

SR, defined in the conventional way via th
maximum—as a function of input noise power—in the o
put power signal-to-noise ratio~SNR! at the fundamenta
frequencyv, has been observed in an experiment perform
in 1992 @8#. Two separate experiments carried out in 19
@10,11# have observed such resonance behavior in the s
tral amplitudes of higher harmonics~including the even
ones! when the symmetry-breaking dc signalx0 is present.
Numerical simulations that determined the output power
the k5124 harmonics of the SQUID model~6! were re-
cently presented, along with an approximate theoretical c
putation of this output power for thek51,2 harmonics@6#.

FIG. 2. PotentialU(x) ~solid curve! and its derivativeU8(x)
~dashed curve, scaled by 1/4 for plotting convenience! for ~a!
b55, x050, ~b! b55, x050.1, ~c! b51, x050, ~d! b51,
x050.1.
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Very good agreement was found between theory and num
cal simulations. In what follows, we present a much ful
account of the theoretical calculation of the output power
well as new results which provide a guide for using the re
nance behavior depicted in Fig. 1 in practical nonlinear d
namic devices.

IV. THE SQUID LOOP AS A TWO-STATE SYSTEM
WITH ASYMMETRY

We now present an approximate theoretical calculation
the first two spectral amplitudes in the output PSD. Sin
tL!t, the SQUID may be assumed to remain in its~non-
equilibrium! steady state, making transitions~accompanied
by the emission of a single flux quantum! only when the
noise causes the currently occupied minimum to coinc
with a point of inflexion that can be calculated v
(]2Ue /]x

2)50. A straightforward calculation yields the lo
cations of the points of inflexion generated in place of t
left and right minima when a transition between states occ

xi15
m21

2
1

1

2p
cos21~2bs

21!,

xi25
m11

2
2

1

2p
cos21~2bs

21!. ~12!

Thus the noise must achieve the values

yc1,25xi1,22x02
m

2
2h~ t !1

bs

2p
sin~2pxi1,2! ~13!

to accomplish switching. Therefore, we model the SQUID
a two-state system with a hysteretic input-output charac
istic having state probabilitiesp1,2(t) and master equations

ṗ15W21p22W12p1 ,

ṗ25W12p12W21p2 , ~14!

wherep11p251 andWik denotes the transition rate from
statei to statek. These rates are the approximate inverses
the mean passage times^t l& and^t r& introduced earlier. The
transition rates are computed by solving@9# the first passage
problem for the OU process~underpinning the noise! be-
tween the valuesyc1 andyc2. ForW12 we assume the pres
ence of an absorbing boundary atyc2, with yc1 being the
start point. Then we have,

W12
21'T1252s22E

yc2

yc1
ez

2/s2tdzE
2`

z

e2z82/s2tdz8

52tApE
uc2

uc1
eu

2
C~u!du. ~15!

A corresponding expression may be obtained forW21

W21
21'T2152tApE

uc2

uc1
eu

2
C~2u!du. ~16!

We have defined C(u)[ 1
2@11 erf(u)# and uc1,2

[yc1,2/sAt; further, we have, for later notational conve
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55 4053HIGHER-ORDER RESONANT BEHAVIOR IN . . .
nience, setT12[^t l& andT21[^t r&. As expected, forx050,
we findyc252yc1 andT125T21. The integrals in Eqs.~15!,
~16! may be expressed in terms of the imaginary error fu
tion erfi(z)5erf(iz)/ i and the generalized hypergeomet
function pFq(a1 , . . . ,ap ;b1 , . . . ,bq ;z)

E
uc2

uc1
eu

2
C~6u!du

5F 14Aperfi~u!6
2F2~1,1;

3
2 ,2;u

2!u2

2Ap
G
uc2

uc1

.

To compute the PSD of the SQUID output, we must fi
solve the system~14! for the state probabilitiesp1,2(t). Then,
the two-state dynamics that characterize the SQUID may
well approximated by the global probability density functio

P~x,t !'p1~ t !d~x2x10!1p2~ t !d~x2x20!, ~17!

wherex1,20[x1,2uA50 are the locations of the minima of th
unperturbedpotential~7!. The mean valuêx(t)& is obtained
from

^x~ t !&5E xP~x,t !dx5x10p1~ t !1x20p2~ t !. ~18!

A general solution of Eq.~14! is beyond the scope of thi
paper. However, we are interested in the spectral amplitu
of the first two peaks (k51,2) in the output PSD. Accord
ingly, we are interested only in an expansion of^x(t)& to
include terms up to second order~i.e., thek52 harmonic!

^x~ t !&5M01M1cos~vt1f1!1M2cos~2vt1f2!, ~19!

wheref1,2 are phases that may have random compone
and the amplitudesMi are as yet undetermined. The autoco
relation function of the output is

K~s![^^x~ t !x~ t1s!&& t→
1

TE0
T

^x~ t !&^x~ t1s!&dt ~20!

in the s→` limit, T52p/v being the signal period. Using
Eq. ~19! we readily find

K~s!5M0
21

M1
2

2
cos~vs!1

M2
2

2
cos~2vs!, ~21!

so that the powers at the frequenciesv and 2v in the output
PSD are, respectively,M1

2/2 andM2
2/2.

We solve the system~14! after expanding the transitio
rates toO(A2). Specifically, we defineuc1,20[uc1,2uh(t)50
and set

uc1,25uc1,202h8~ t !, h8~ t ![A8sin~vt1u!, ~22!

with A8[A/A2^y2& being a natural~and convenient! pertur-
bation expansion parameter; we expect the theory to be v
for A8!1 and within the realm of the adiabatic approxim
tion ~see above!. We now expand the transition rates as
-

t

e

es

ts,
-

lid

W12'a01a1h8~ t !1a2h82~ t !,

W21'b01b1h8~ t !1b2h82~ t !, ~23!

the expansion coefficients being obtained through a strai
forward expansion of the transition rates

a0[T120
21, a1[2

T8120
T120
2 , a2[2

1

2 S T9120
T120
2 22

T8120
2

T120
3 D

b0[T210
21, b1[2

T8210
T210
2 , b2[2

1

2 S T9210
T210
2 22

T8210
2

T210
3 D
~24!

where,

T120[T12uh8~ t !5052tApE
uc20

uc10
eu

2
C~u!du

T8120[
]T12
]h8

U
h8~ t !50

52tAp$euc20
2

C~uc20!2euc10
2

C~uc10!%

T9120[
]2T12
]h82

U
h8~ t !50

54tAp$uc10e
uc10
2

C~uc10!2uc20e
uc20
2

C~uc20!%

T210[T21uh8~ t !5052tApE
uc20

uc10
eu

2
C~2u!du

T8210[
]T21
]h8

U
h8~ t !50

52tAp$euc20
2

C~2uc20!2euc10
2

C~2uc10!%

T9210[
]2T21
]h82

U
h8~ t !50

54tAp$uc10e
uc10
2

C~2uc10!2uc20e
uc20
2

C~2uc20!%.

~25!

We now formally integrate the first equation in Eq.~14!,
ignoring the initial condition term which vanishes in th
t→` limit

p1~ t !5g21~ t !E
t0

t

W21~ t8!g~ t8!dt8, ~26!

where

g~ t ![expH E t

@a1bh8~ t8!1gh82~ t8!#dt8J , ~27!

with a[a01b0 , b[a11b1 , g[a21b2. Performing the
integration in Eq.~27! and expanding the result toO(A82)
we find,
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4054 55M. E. INCHIOSA, A. R. BULSARA, AND L. GAMMAITONI
g~ t !'eztH 12
bA8

v
cos~vt1u!2

gA82

4v
sin~2vt1u!

1
b2A82

2v2 cos2~vt1u!J
g21~ t !'e2ztH 11

bA8

v
cos~vt1u!1

gA82

4v
sin~2vt1u!

1
b2A82

2v2 cos2~vt1u!J , ~28!

where z[a1gA82/2. Substituting these expressions in
Eq. ~26!, we may carry out the integration, witht0→2`.
After considerable simplification we finally arrive at

p1~ t !5
b0

z
1A8

b0b2b1a

a~a21v2!1/2
cos~vt1f11u!

1
A82

4v2 ~Pc
21Ps

2!1/2cos~2vt1f21u!1
A82

4v2P0 ,

~29!

whereu is the ~in general, random! initial phase and,

f1[tan21~a/v!, f2[tan21~Ps /Pc!,

Pc[~a214v2!21$a~b0b
222v2b2!12v2~b0g12b1b!%

1b~a21v2!21H b0bv2

a
22v2b12b0baJ

Ps[~a214v2!21$2v~b0b
222v2b2!

2av~b0g12b1b!%1v~a21v2!21

3H 2abb122b0b
21

b0g

a
~a21v2!J

P0[
b0b

212v2b2

a
2

2b

a21v2 ~b1v
21abb0!.

Then, using Eqs.~17! and~19!, we arrive at the expression

M15A8~x102x20!
b0b2b1a

a~a21v2!1/2
,

M25
A82

4v2 ~x102x20!~Pc
21Ps

2!1/2. ~30!

We have already shown@6# that the expressions~30!
agree very well with direct numerical simulations of the sy
tem ~5! and ~8!, as well as the two-state system~23!. In
particular, we have seen that the two-state approxima
that is widely used in adiabatic treatments of SR@1,12# is a
very good approximation to the SQUID dynamics because
the essentially steady-state nature of Eq.~5! predicated by
the small time constanttL . Hence, we have been able
treat the problem as a first passage problem of thenoise
rather than the full dynamics~5! ~the latter problem would be
analytically intractable!. We now analyze the expression
~30! under different circumstances.
-

n

f

In Figs. 3 and 4 we show the powers@computed via the
theoretical expressions~30!# M1

2/2 andM2
2/2 in the first two

peaks (k51,2) in the output PSD as functions of the d
offsetx0 and the input noise parameters2. The known signal
amplitude is held constant, as is the SQUID nonlinearity
rameterbs ; this results in a constant ratioA/DU0, where

FIG. 3. Contour plot of SQUID output powerM1
2/2 ~in dB! at

the driving frequencyv vs asymmetrizing dc signalx0 and noise
parameter ~in units of sec21) s2. Other parameters:bs55,
A50.1,v510, t50.01,m51. Numbers within contour plot mark
the maximum and minimum power points~in dB!.

FIG. 4. Contour plot of SQUID output powerM2
2/2 ~in dB! at

frequency 2v vs asymmetrizing dc signalx0 and noise paramete
~in units of sec21) s2. Other parameters as in Fig. 3. Numbe
within contour plot mark the maximum and minimum power poin
~in dB!.
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DU0 is the height of the potential barrier of the central b
stability of our problem, in the absence of any skewing~i.e.,
for x050). In M1

2/2 ~the SQUID output power at frequenc
v) the basic SR effect is readily visible: forx050, the
power displays a clear maximum as a function of the in
noise power. The power in the first harmonic,M2

2/2, vanishes
asx0→0 as expected. However, forx0Þ0 this power, like
the power at the fundamental, displays a maximum as a fu
tion of the input noise power; also, a maximum is seen a
function ofx0, and the location of this maximum depends
the noise power. These results have also been demonst
in bistable systems driven by white noise@2#. The powers do
not display a strong dependence onv; however, the adia-
batic approach does require thatf[(v/2p)!t21,tL

21 .
It is important to note that the central bistable structure

the potential disappears forx051/2; therefore, close to this
point the bistable model upon which our theoretical calcu
tion is based begins to break down. In@6# we performed
numerical computations of the powersMk

2/2 up tok54. We
found that the bistable theory agreed well with numeri
simulations of a SQUID with a two-state-filtered outpu
even forx0 close to 1/2. The bistable theory also agrees w
with numerical simulations of a SQUID loop with an unfi
tered, analog output, except fork51 with x0 approaching
1/2. For this case the bistable theory, by ignoring the mot
within the deepest~and approximately parabolic! potential
well, underestimates the output power at frequencyv, al-
though it does accurately estimate the power at 2v, which
arises primarily from interwell motion.

V. DISCUSSION

It is worth starting this section by reiterating that th
theory of this paper has been shown@6# to be in excellent
agreement with numerical simulations on the SQUID eq
tions ~6! and ~8!. In fact, the matchings~4! of deterministic
and stochastic time scales that characterize this higher-o
resonant behavior have been shown to hold true~qualita-
tively! for the particular example system~the SQUID loop!
considered here.

What are the limits of validity of the theoretical calcul
tions presented here? In classical SR treatments@1,3,12# the
noisey(t) is taken to be white and a perturbation modific
tion of the Kramers rate used to compute the transition r
Note that the Kramers rate in its ‘‘Arrhenius’’ form@9# is,
itself, an approximation strictly valid for low-noise intensi
and large potential barrier heights; similar restrictions s
apply to the system at hand, if one wishes to describe
dynamics via a Markov process~see below!. The remaining
approximations that we have employed are the perturba
expansion~23! in powers ofA8 and the adiabatic approxi
mation which assumes the ac bias signal frequency to be
slowest rate in the dynamics. Both these approximations
well satisfied in the theory and simulations presented here
fact, we would expect the theory to yield acceptable res
even when the periodic signal is slightly suprathreshold,
when deterministic switching is possible, as long as the no
has values such thatA8!1, in this case the system is apt
follow the behavior of the phenomenological two-state s
tem discussed in Sec. II. However, when the input sig
and/or noise terms become too large, the SQUID is abl
t
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make excursions to outlying minima of the potential~9! and
the system can no longer be approximated by centr
bistable dynamics; in this case the theory breaks down.
the adiabatic criterion to be satisfied we should ha
f!tL

21,t21. Simultaneously, the system and signal para
eters should be chosen so thatf!W12,W21, else our ap-
proach of assuming the SQUID to be in its steady state
essentially tracking the noise dynamics@via the computation
of the transition rates in Eq.~14!# breaks down. Certainly
the first of these conditions holds true for the frequenc
considered in this work, and for those that are likely to
encountered in many practical applications. When the sig
frequency exceeds the noise bandwidth, the adiabatic
proximation begins to unravel; however, for signal freque
cies not too far removed from the noise bandwidth, t
theory can be shown to yield the correct qualitative behav
although agreement such as that reported in@6# will not be
achieved in this case.

The above comments are directly connected to the va
ity of the representation of the SQUID dynamics via a
chotomous Markov process. Typically, the residence tim
distribution for the process may be computed directly~see,
e.g., @4#! from the probability density function~17!. For a
Markov process, the residence times distribution is expec
to be a decaying exponential at long times, at least. In g
eral, one would realize such dynamics if the transition ra
Wik were constant. The adiabatic assumptions are, there
critical to the success of the Markov approximation; by a
suming the signal frequency to be much smaller than ot
characteristic system frequencies, we are assuming the
sition rates to be quasistationary. At the same time, suc
sive transitions or ‘‘spikes’’ should not be correlated; assu
ing very weak@as quantified in Eq.~22!# signal amplitudes
and weak~compared to the barrier height! noise intensities
assures this to be the case, even though the noise correl
time is typically greater than the SQUID constanttL ~the
exception being thermal noise!. When the aforementioned
conditions are met, the dynamics are approximately Mark
ian; we have already seen@6# that the approximations pro
vide highly accurate representations of the actual dynam

The results of this paper~which explain very well the
experimental observations of@10# and@11#! should be appli-
cable to generic bistable and~in special situations such a
described here in connection with the SQUID! multistable
systems with broken symmetry. Many nonlinear detect
suffer from significant low-frequency noise limitations~the
noise may be internal, e.g., 1/f , or external!. By carefully
selecting the frequencyv of the knownbias signal, the de-
tection may be shifted to a more acceptable part of the
quency spectrum. Then, in a detector that has ana priori
symmetric potential, the appearance of the even multiple
v in the output PSD, together with the change in the spec
amplitudesuMku in the presence of the symmetry-breakin
signal~which may be dc, or have a single frequency in whi
case one looks at the properties of combination tones in
output PSD!, may be used to detect or estimate the we
target signal. This idea was, in fact, demonstrated in labo
tory experiments carried out with a specially designed ‘‘S
SQUID’’ @10# assuming only internal white noise, as well
a conventional rf SQUID@11# using externally applied cor
related noise. In actual remote sensing applications, one
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ten knowsa priori the spectral characteristics of the bac
ground noise. In this case, it is clearly of benefit to be able
adjust the potential barrier heightDU0 and/or the amplitude
of the known bias signal so as to achieve the highest poss
sensitivity. In fact, the peak powers in Figs. 3 and 4 incre
as the ratioA/DU0 increases; hence, for optimum detectio
it might be advisable to adjust the bias signal amplitudeA
such that it is almost at the threshold for determinis
switching, with the barrier height already selected to ma
mize the output SNR. The barrier height may be adjusted
either fabricating a SQUID with a certain nonlinearity p
rameterbs ~in turn, this parameter depends on the juncti
critical currentI c and the loop inductanceL) or by introduc-
ing an asymmetrizing dc fluxx0, as discussed in this paper.
is important to note that theory predicts the best poss
output SNR at the fundamental for zero barrier height, c
responding to the linear system case; however, other pr
cal considerations may render this mode of detection imp
tical in real devices, e.g., the rf SQUID detector where
background noise and a low slew rate make detection of v
ur
y
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weak signals via conventional techniques difficult, in t
presence of even moderate amounts of noise. For prac
applications it would be desirable to be able to computa
priori the receiver operating characteristics of the sen
@13#, which are plots of detection vs false alarm probabiliti
for different detection thresholds. This calculation is cu
rently in progress. Note also that the frequency shifting id
that is the focus of this paper applies exclusively to nonlin
systems; a linear sensor, for example, could not exploit
phenomenon.
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